IMPACTO DOS SENTIMENTOS SOBRE A VACINA DE COVID-19 NO MERCADO FINANCEIRO BRASILEIRO
DOI:
https://doi.org/10.22561/cvr.v34i3.7314Keywords:
Sentiment Analysis, Vaccine, Covid-19, Stock Market, ForecastAbstract
This paper had two main objectives: the first was to perform a sentiment analysis to the detect the dominant feeling of twitter brazilian users about the vaccine/vaccination against Covid-19 in that country, and the second one was to investigate if there is a relationship of dependence between the verified feeling and the fluctuations of the intern stock market. To carry out the research, machine learning algorithms were used. For sentiment analysis the method used was Naive Bayes, and for the forecast of the financial market, was used the SVM method combined with the cross-validation technique applied to time series. As a result, it was found that the dominant feeling about the analyzed topic was negative for all days that comprised the research sample and the main highlight of the negative messages was the reaffirmation of the pandemic situation and the allusion to terms related to policy. Furthermore, the research was not able to confirm the dependence relationship between the daily sentiment about the Covid-19 vaccine and the oscillations observed in the financial market. Finally, the results found suggest a more incisive action by political entities in vaccination and information campaigns, to regain public credibility with regard to the control of the pandemic in the country. Despite that, it suggests the application of other methods to investigate the relationship between sentiment and the financial market, for example, to analyze this relation in hours and minutes, instead of days.
References
Araújo, J. G. Jr., & Marinho, L. B. (2018). Using online economic news to predict trends in Brazilian stock market sectors. Proceedings of the 24th Brazilian Symposium on Multimedia and the Web, 1. 37-44. doi: https://doi.org/10.1145/3243082.3243087
Apostolidis-Afentoulis, V., & Lioufi, K. I.(2015) SVM classification with linear and RBF kernels. 21, 1-7. doi: http://doi.org/10.13140/RG.2.1.3351.4083
Bharathi, S., & Geetha, A. (2017). Sentiment analysis for effective stock market prediction. International Journal of Intelligent Engineering and Systems, 10(3), 146-154. doi: http://doi.org/10.22266/ijies2017.0630.16
Bollen, J., Mao, H., & Zeng, X. (2011). Twitter mood predicts the stock market. Journal of computational science, 2(1), 1-8. doi: https://doi.org/10.1016/j.jocs.2010.12.007
Castro, L. N. D., & Ferrari, D. G. (2016). Introdução à mineração de dados: conceitos básicos, algoritmos e aplicações. Editora Saraiva.
Carosia, A. E. O., Coelho, G. P., & Silva, A. E. D. (2019). The influence of tweets and news on the brazilian stock market through sentiment analysis. In Proceedings of the 25th Brazillian Symposium on Multimedia and the Web. 1, 385-392. doi: https://doi.org/10.1145/3323503.3349564
Costa, A. G. (2021). Entenda quando um sistema de saúde entra em colapso e como sair da crise. CNN Brasil, from: https://www.cnnbrasil.com.br/saude/2021/03/03/entenda-quando-um-sistema-de-saude-entra-em-colapso-e-como-sair-da-crise.
Das, M. K., Singh, D., & Sharma, S. (2021). Media news on vaccines and vaccination: The content profile, sentiment and trend of the online mass media during 2015–2020 in India. Clinical Epidemiology and Global Health, 10, 1-6. doi: https://doi.org/10.1016/j.cegh.2020.100691
Depexe, S. (2022). NVivo e Twitter: da coleta de dados à exploração do dataset #coronavirusnobrasil. Comunicação & Inovação, 23(51), 37-55. doi: https//doi.org/10.13037/ci.vol23n51.8412
Dubey, A. D. (2021) Public Sentiment Analysis of COVID-19 Vaccination Drive in India. doi: http://dx.doi.org/10.2139/ssrn.3772401
Estevão, A. (2020). COVID-19. Acta Radiológica Portuguesa, 32(1), 5-6. doi: https://doi.org/10.25748/arp.19800.
Galzo, W. (2021) Brasil lidera número de mortes diárias por Covid-19 no mundo em março. CNN Brasil, from: https://www.cnnbrasil.com.br/saude/2021/03/30/brasil-e-o-pais-que-mais-registra-mortes-diarias-por-covid-19-em-marco.
Hasan, M., Rundensteiner, E., & Agu, E. (2014). Emotex: Detecting emotions in twitter messages, from: http://web.cs.wpi.edu/~emmanuel/publications/PDFs/C30.pdf
Igarashi, W., Valdevieso, G. S., & Igarashi, D. C. C. (2021). Análise de sentimentos e indicadores técnicos: uma análise da correlação dos preços de ativos com a polaridade de notícias do mercado de ações. Brazilian Journal of Business, 3(1), 470-486. doi: https://doi.org/10.34140/bjbv3n1-029
KEMP, S. (2022). Another year of bumper growth. We are Social, from: https://wearesocial.com/uk/blog/2022/01/digital-2022-another-year-ofbumper-growth-2/.
Lima, M. L. (2016). Um modelo para predição de bolsa de valores baseado em mineração de opinião [Dissertação de mestrado]. Universidade Federal do Maranhão. From: Biblioteca digital de teses e dissertações: https://tedebc.ufma.br/jspui/handle/tede/tede/297.
Liu B., & Zhang L. (2012) A Survey of Opinion Mining and Sentiment Analysis. In: Aggarwal C., Zhai C. (eds) Mining Text Data. Springer, Boston, MA. doi: https://doi.org/10.1007/978-1-4614-3223-4_13
Lupion, B. (2021) A sucessão de erros que levou à crise de oxigênio em Manaus. DW Brasil, from: https://www.dw.com/pt-br/a-sucess%C3%A3o-de-erros-que-levou-%C3%A0-crise-de-oxig%C3%AAnio-em-manaus/a-56275139.
Massarani, L., Waltz, I., Leal, T., & Modesto, M. (2021). Narrativas sobre vacinação em tempos de fake news: uma análise de conteúdo em redes sociais. Saúde e Sociedade, 30(2), 1-16. doi: https://doi.org/10.1590/S0104-12902021200317
Meena, R., & Bai V, T. (2020). Russia’s Covid–19 Vaccine: Social discussion and first emotions. doi: https://doi.org/10.21203/rs.3.rs-95570/v1
Milani, E., Weitkamp, E., & Webb, P. (2020). The visual vaccine debate on Twitter: A social network analysis. Media and Communication, 8(2), 364-375. doi: https://doi.org/10.17645/mac.v8i2.2847
Ministério da Saúde (2021, 19 de julho). Painel Coronavírus. Coronavírus Brasil, from Ministério da Saúde: https://covid.saude.gov.br/
Mittal, A., & Goel, A. (2012). Stock prediction using twitter sentiment analysis. Standford University, from: http://cs229.stanford.edu/proj2011/GoelMittal-StockMarketPredictionUsingTwitterSentimentAnalysis.pdf
Neuenschwander, B., Pereira, A. C., Meira, W. Jr., & Barbosa, D. (2014). Sentiment analysis for streams of web data: A case study of brazilian financial markets. In Proceedings of the 20th Brazilian Symposium on Multimedia and the Web, 1, 167-170. doi: https://doi.org/10.1145/2664551.2664579
Netto, R. G. F., & Corrêa, J. W. N. (2020). Epidemiologia do surto de doença por coronavírus (covid-19). Desafios-Revista Interdisciplinar da Universidade Federal do Tocantins, 7(3), 18-25. doi: https://doi.org/10.20873/uftsuple2020-8710
Nofsinger, J.R. (2005). Social mood and financial economics, Journal of Behaviour Finance, 6(3), 144–160. doi: https://doi.org/10.1016/j.jocs.2010.12.007
Oliveira, A. D. C. M. D. (2016). Identificando emoções em manchetes de notícias escritas em português do Brasil utilizando Naïve Bayes [Monografia] Universidade Federal do Ceará. from Biblioteca digital de teses e dissertações: http://www.repositorio.ufc.br/handle/riufc/24819
Pang, B., Lee, L., & Vaithyanathan, S. (2002). Thumbs up? Sentiment classification using machine learning techniques. Conference. on Empirical Methods in Natural Language Processing, 1, 1-9. doi: https://doi.org/10.3115/1118693.1118704
Piedrahita-Valdés, H., Piedrahita-Castillo, D., Bermejo-Higuera, J., Guillem-Saiz, P., Bermejo-Higuera, J. R., Guillem-Saiz, J., Sicilia-Montalvo, J. A., & Machío-Regidor, F. (2021). Vaccine hesitancy on social media: Sentiment analysis from June 2011 to April 2019. Vaccines, 9(1), 28. doi: https://doi.org/10.3390/vaccines9010028
Rahim, N. H. A., & Rafie, S. M. (2020). Sentiment analysis of social media data in vaccination. International Journal, 8(9), 5259-5264. doi: https://doi.org/10.30534/ijeter/2020/60892020
Raghupathi, V., Ren, J., & Raghupathi, W. (2020). Studying public perception about vaccination: A sentiment analysis of tweets. International journal of environmental research and public health, 17(10), 1-23. doi: https://doi.org/10.3390/ijerph17103464
Ren, R., Wu, D. D., & Liu, T. (2018). Forecasting stock market movement direction using sentiment analysis and support vector machine. IEEE Systems Journal, 13(1), 760-770. doi: http://doi.org/10.1109/JSYST.2018.2794462
Sabóia, G., Mazieiro, G., Andrade, H., & Adorno, L. (2021). Anvisa aprova uso emergencial das vacinas CoronaVac e AstraZeneca no Brasil, Agência Nacional de Vigilância Sanitária, from: https://noticias.uol.com.br/saude/ultimas-noticias/redacao/2021/01/17/anvisa-aprova-pedido-de-vacina-do-butantan-e-da-fiocruz.htm
Santos, F. P., Silveira, I. F., & Lechugo, C. P. (2017). Análise da percepção dos alunos sobre as práticas docentes por meio da mineração de dados educacionais. Análise, 38(05), 9-24. doi: http://www.revistaespacios.com/a17v38n05/a17v38n05p09.pdf
Santos, G. C. (2020). Algoritmos de Machine Learning para previsão da B3 [Dissertação de Mestrado]. Universidade Federal de Uberlândia, from Biblioteca digital de teses e dissertações: https://repositorio.ufu.br/handle/123456789/29897
Shah, D., Isah, H., & Zulkernine, F. (2018). Predicting the effects of news sentiments on the stock market. In 2018 IEEE International Conference on Big Data (Big Data), 1, 4705-4708. doi: http://doi.org/10.1109/BigData.2018.8621884.
Shayaa, S., Jaafar, N. I., Bahri, S., Sulaiman, A., Wai, P. S., Chung, Y. W., & Al-Garadi, M. A. (2017). Sentiment analysis of big data: Methods, applications, and open challenges. In IEEE Access, 6, 37807-37827. doi: http://doi.org/10.1109/ACCESS.2018.2851311
Shrivastava, S. (2020). Cross Validation in Time Series, from: https://medium.com/@soumyachess1496/cross-validation-in-time-series-566ae4981ce4
Twitter, I. (2020). Perguntas frequentes de novos usuários, from: https://help.twitter.com/pt/new-user-faq.
Valle-Cruz, D., Fernandez-Cortez, V., López-Chau, A., & Sandoval-Almazán, R. (2021). Does twitter affect stock market decisions? financial sentiment analysis during pandemics: A comparative study of the h1n1 and the covid-19 periods. Cognitive computation, 1, 1-16. doi: https://doi.org/10.1007/s12559-021-09819-8
Wang, S. I., & Manning, C. D. (2012). Baselines and bigrams: Simple, good sentiment and topic classification. In Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics, 2(1), 90-94. doi: https://aclanthology.org/P12-2018.pdf
Wiysonge, C. S., Ndwandwe, D., Ryan, J., Jaca, A., Batouré, O., Anya, B. P. M., & Cooper, S. (2021). Vaccine hesitancy in the era of COVID-19: could lessons from the past help in divining the future?. Human vaccines & immunotherapeutics, 1-3. doi: https://doi.org/10.1080/21645515.2021.1893062
Yadav, A., Jha, C. K., Sharan, A., & Vaish, V. (2019). Sentiment analysis of financial news using unsupervised and supervised approach. In International Conference on Pattern Recognition and Machine Intelligence, 1, 311-319. doi: http://doi.org/10.1007/978-3-030-34872-4_35
Yin, F., Wu, Z., Xia, X., Ji, M., Wang, Y., & Hu, Z. (2021). Unfolding the determinants of COVID-19 vaccine acceptance in China. Journal of medical Internet research, 23(1), e26089. doi: http://doi.org/10.2196/26089
Downloads
Published
How to Cite
Issue
Section
License
A submissão do texto para avaliação implica no compromisso de que o material não seja submetido a um outro periódico nacional ou internacional e autoriza, caso aprovado, a sua publicação.
Os artigos publicados são de responsabilidade dos autores não traduzindo, necessariamente, a opinião da revista. A reprodução dos artigos, total ou parcial, pode ser feita desde que citada esta fonte.
Considerando que o(s) autor(es) do texto concorda(m) com a sua publicação, caso o mesmo seja aprovado pela revista, sem que disso lhe seja devido qualquer remuneração, reembolso ou compensação de qualquer natureza, a Revista Contabilidade Vista & Revista através do Departamento de Ciências Contábeis da Faculdade de Ciências Econômicas da Universidade Federal de Minas Gerais, detém todos os direitos autorais dos textos publicados, conforme a legislação brasileira vigente.
Os direitos autorais para artigos publicados nesta revista são do autor, com direitos de primeira publicação para a revista. Em virtude de aparecerem nesta revista de acesso público, os artigos são de uso gratuito, com atribuições próprias, em aplicações educacionais e não-comerciais. A revista permitirá o uso dos trabalhos publicados para fins não-comerciais, incluindo direito de enviar o trabalho para bases de dados de acesso público.