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ABSTRACT

The last few years have witnessed a great interest in nonlinear dyna-
mies. This fascinatingsubject has enabled both theoreticians and practitioners
in many fields to handle and analyse "c1assical" problems in a new and
promising way. Although some of the main ideas in nonlinear dynamics are
not necessarily complicated, the average researcher is not sufficient1y acquain-
ted with the basic concepts and terminology and this usually constitutes a
difficulty which very few overcome. The main objective of this paper is to
introduce the nonspecialist reader to some key ideas which have been recently
used in the analysis of dynamical systems and time series in economics. In
particular, special attention will be given to nonlinear dynamics, phase space
reconstruction, attractors, dynamical invariants and the diagnosis of chaotic
and nonlinear dynamics from time series. Anumber ofreferences are provided
for further reading.

1 INTRODUCTION

In the last three decades great attention has been devoted to the
study of nonlinear dynamics. With very few exceptions, most of the first
papers published in this area were written either by physicists or mathema-
ticians. Originally, the prima!}' concern was to develop new mathematical
tools to understand observed nonlinear phenomena which could not be
analysed using the already available concepts developed for linear systems.

1 Professor do Departamento de Engenharia Eletrônica da EEUFMG e pesquisador
do CPDEE/EEUFMG.

2 Professor do Departamento de Ciências Econômicas da FACE da UFMG e pesqui-
sador do CEDEPLAR da UFMG.

Both authors gratefully acknowledge financiai support from FAPEMIG. Luis
Aguirre also acknowledges financiai support from CNPq and PRPq/UFMG.
The authors are members of the MACSIN (Modelagem, Análise e Controle de
Sistemas Não-Lineares) group, http://www.cpdee.ufmg.br/-macsin.

Nova Economia I Belo Horizonte I v. 7 I n. 2 I 1997. 9

http://www.cpdee.ufmg.br/-macsin.


As far as experimentation goes, two different scenarios were
common. In one situation, certain dynamical phenomena displayed by a real
system (usually a mathematical model or a laboratory "set up") needed to be
studied and for this new approaches were required. Another situation arose
when new mathematical concepts and numerical algorithms, developed for
the analysis of nonlinear phenomena, had to be tested, preferably in the
context of a real situation. In either case the researcher was confronted with
a problem in which he or she had both data and algorithms. Combining these,
it was usually possible, especialiy in cases when some dynamical property of
the system was known a pri01i (as it often happens in laboratory experi-
ments), to verify if the algorithms were adequate and if they yielded the
expected results.

In the last years it has become apparent that, since ali that is
required apart from such algorithms are the data, the application of such
newtool8 to the analysis ofa much wider class ofproblems is not onlypossible
but al80 desirable. In many of these new situations, however, a number of
difficulties arise due to the fact that the benefits of a controlled environment
attained in a laboratory are no longer present. Such difficulties are usually
caused by short time series of noisy data.

The new tool8 developed as a consequence ofthe so-called chaos
advent have gained popularity among practitioners in many different fields
sueh as engineering (Mess, Sparrow, 1987), medieine (Goldberger et al.,
1990), eeology (Sehaffer, 1985) and biology (Hassell et al., 1991), to list a few.
Eeonomies, of eourse, is no exception to this rule (Boldrin, 1988; Broek,
Malliaris, 1989; Broek et al., 1991; Rosser, 1991, Boldrin, 1992; Jaditz,
Sayers, 1993; Peel, Speight, 1994).

The interest in nonlinear dynamies in economics ean be verified
by the rapidly growing number of related papers. The basic appeal for
eonsidering nonlinear dynamics in the analysis of economie data is that many
observed phenomena can now be explained based on concepts sueh as
dynamical bifurcations, catastrophe theory and chaos (Day, 1985).3 Moreo-
ver, if a time series is represented using appropriate eoordinates, the result
is, of eourse, no longer a time series but rather a geometrical object which
ean be studied using tool8 whieh are not standard in time series analysis.
These issues will be addressed in seetions 4, 5 and 6 where referenees wili be
provided for further reading.

These appealing benefits prompted a number of authors to apply
the new tool8 and ideas from nonlinear dynamies to economies. Mathemati-
eally-based introductions to the subject have been presented by (Seheink-

3 Other apparent advantages will be mentioned in the followingsections.
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man, 1990; Brock, Dechert, 1991) whereas a more readable and informal
approach has been followed in (Baumol, Benhabib, 1989). However, in the
latter papel' the vital issue of quantification of nonlinear dynamics has not
been addressed.

The aim of this papel' is to provide a "non-mathematical"
introduction to nonlinear dynamics and chaos in economics addressing the
issues of quantification and diagnosis of nonlinearities and chaos. AB a
thorough introduction to the subject would be impractical, only some ofthe
issues which are believed to be of greater relevance to economists wiU be
presented. HopefuUy, the cited references wiUmeet any further needs ofthe
more eurious reader.

The papel' is organised as fo11ows.Section 2 provides a historical
review of dynamics in economics. Section 3 will address the question of why
should we be concemed with nonlinear dynamics and chaos in economics.
Section 4 briefly reviews the fundamental problem of phase-space reconstruc-
tion from time series. Section 5 introduces the concepts of dynamical attractors
and section 6 reviews two dynamical invariants used to quantifY chaotic attrac-
tors. The diagnosis ofnonlinearity and (eventually) of chaos from a time series
is addressed in section 7. The main points ofthe papel' are reviewed in section
8 where a number of references are provided for further reading.

2 DYNAMICS IN ECONOMICS - A HISTORICAL PERSPECTIVE

Traditionally, the majority of economists' theoretical researçh
foeusses on static phenomena and, when the dynamic methodology is used,
attention tends to concentrate on problems with time paths that converge to
stationary states. Interest in formal mathematical models that study persist-
ent oscillatory dynamic behavior started in the 1930s. The diseussion of
persistent oscillations and chaos in economic models is a more recent pheno-
menon. In order to evaluate the impact of these new ideas on the theoretical
field of economic dynamics it is necessary to understand which were the
prevalent research paradigms in those times.

The origins of economists' interest in complex dynamics can be
traced to the enormous literature on business cycles. Due to the complexity
of business cycles and the many differences between them, their main
features and causes have long been a matter ofdebate. At the beginning some
economists related their causes with natural forces, others to psychological
factors, and still others to the workings ofthe monetary and banking system.
Toward the end of the nineteenth century the foeus began to shift towards
industry and employment phenomena, especiaUy to the great fluctuations
that characterised the capital goods industries. This vast nonmathematical
Nova Economia I Belo Horizonte I v. 7 I n. 2 I 1997. 11



literature was composed of a large number of models trying to provide a set
of conditions sufficient to generate oscillatory behavior similar to that
observed in the economy. In most of the cases, however, these models were
vague and did not lend themselves to empirical validation.

Starting in the 1930s this situation began to change with the
contributions of several economists who used difference and differential
equation models to generate deterministic time paths of economic variables
(Frisch, 1933; Samuelson, 1939; Ezekiel, 1938; Domar, 1946). Ezekiel's
simple "cobweb model" of market price determination is probably the first
contact of economics students with dynamics (Chiang, 1982). Samuelson's
famous multiplier-accelerator model - another well-known example - uses
the framework of Keynesian macroeconomic theory. The latter explores the
dynarnic process ofthe national income when the accelerator principIe works
together with a Keynesian multiplier. It has the following structure:

Yt Ct + lt + Go,

(O < y < 1),

(a > O),

where the national income, Yt, includes the rate of consumption, Ct, the rate
of investment, lt, and government expenses, Go (exogenous). Consumption
in period t is proportional to income in period (t - 1). Induced investment is
a function of the trend in the rate of consumption. Substituting the second
equation in the third leaves investment as a function ofthe previous period's
rate of growth of national income (the acceleration principIe).

After proper substitutions in the first equation the model can
be condensed into a single equation. Samuelson's equation is a nonhomoge-
neous second-order linear difference equation with fixed coefficients:

Yt - Y (1 + a) Yt - 1 + a Y Yt - 2 = Go.
Dependingupon the particularvalues ofthe characteristicroots

of a specific model the time path of the national income may be oscillatory
01' nonoscillatory, convergent 01' explosive. The different results obtained
combining these possibilities are, in a sense, qualitatively equivalent no
matter what the order of the difference equation is, as long as it is linear. As
Baumol says,

"this range of possible time path configurations
simply was not sufficiently rich for the economists'
pUlposes, since in reality time paths are often more
complicated and many oscillations do not seem
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either to explode or dampen toward disappearance"
(Baumol, Benhabib, 1989).

A solution to the above problem seemed to be the appearance of
nonlinear modeIs which played an important role in modelling economic
dynamics starting in the 1940s (Kaldor, 1940; Hicks, 1950; Goodwin, 1951).
Based on real economic issues, not just mathematical formulations, these
authors showed that such modeIs can generate solutions of a stable limit
cycle type toward which aU possible time paths of the dependent variable
converge. It was Goodwin who spent the most efforts toward an endogenous
explanation of economic fluctuations using nonlinear relations in the analy-
sis of dynamic economic processes (Goodwin, 1982).

"By the 1960s, however, the profession had largely
switched to the linear approach making use of
Slutzky's (1927) observation that stable low order
stochastic difference equations could generate cyclic
processes that mimicked actual business cycles"
(Scheinkman, 1990).

Since then on, and until the 1980s, what can be observed is the
dominance of the linear stochastic difference equation approach - at least in
the area of business cycle modelling. Two reasons are pointed out to explain
this tendency: in the first place, it was noted that nonlinear systems did not
reproduce some aspects af actual economic time series; on the other hand,
the competing models seemed to capture some of the features of aggregate
economic time series even with low order autoregressive processes. So, the
analysis of dynamic systems in economics has often been based on linear -
or linearised - models.

In the 1970s new analytical to oIs to study nonlinear dynamic
phenomena were developed in the natural sciences and these contributions
produced important spillovers to economics. These developments led to the
phenomenon of chaos in which a dynamic nonlinear mechanism that is very
simple and deterministic yields a time path so complicated that appears
random. By now it is weUestablished that deterministic systems can generate
dynamics that are extremely irregular (May, 1976).

Besides showing that a sim pIe deterministic nonlinear rela-
tionship - such as a first order nonlinear difference equation - can yield an
extremely complex time path, chaos theory addresses the general question
of

"the (in)stability of deterministic, nonlinear dyna-
mic systems which are able to produce complex
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motions of sueh nature that they are sometimes
seemingly random" (Nijkamp, Reggiani, 1995).

It should be stressed that such systems show trajectories that
sometimes dispIay sharp qualitative changes in behavior, that are extremely
sensitive to microscopic changes in the values of the parameters and, to
mention only the most interesting features, they incorporate the charac-
teristic that small uncertainties may grow exponentially (aIthough all time
paths are bounded) property known as sensitivity to initial eonditions (Nij-
kamp, Reggiani, 1995).

Currently, economists' interest in chaotic dynamics is largely
based upon the fact that most observed economic time series seem to have a
certain degree ofrandomness and, consequently, such time series are difficult
to predict. Some implications of chaos for economic modelling are pointed
out briefly in the next section. In section 8 will be presented a concise
exploratory overview of some contributions of this approach in several areas
of economics.

3 NONLINEAR DYNAMICS: RENEWED HOPES

The use of linear models for modelling and forecasting time
series in the decades before the last can be justified considering that there
were theoretical and computational limitations to the use of nonlinear
models. Besides, the estimation and analysis of linear models had still a long
way to go. However, such models had two main drawbacks when used to
model economic data, namely

i) deterministic linear modeIs were unable to account for the
uncertainties in observed data;

ii) these modeIs could not reproduce sustained oscillations.

In order to overcome these two difficulties, it was necessary to
include in linear modeIs stochastic variables and also exogenous inputs.
Hence, the extra stochastic variables provided some uncertainty whiIst the
exogenous shocks would provide 'random excitation' which would ensure
that the model output would oscillate. As pointed out by Day,

"Traditionally, eeonomie irregularity has been ex-
plained by the superimposition of random shoeks on
what is (usually) assumed to be a stable determinis-
tie linear proeess" (Day, 1985).
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A simpIe example of this has been illustrated in Figure 1 . As
can be seen, the temporal behaviour and the autocorrelation function of a
'random' and a chaotic time series might look very much the same. In other
words, chaotic modeIs can be considered as candidates when sustained
oscillations with some degree ofrandomness are to be analysed. On the other
hand, the well defined deterministic structure underlying the data is clearly
revealed when the time series is reconstructed in phase-space. This will be
discussed further in the following section.

Figure 1
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Chaotic time series and their respective autocorreiation functions may appear random.
Phase-space reconstructions, however, can reveai some hidden structure.
(a) Time series produccd by a random number generator, (b) the corresponding
autocorreiation function and (c) phase space reconstruction. (d) Time series produced
by the map y(k) = 4.0 [1 - y(k - 1)] y(k - 1), (e) the autocorreiation function and (f) the
clearly revealed attractor in the reconstructed phase space.
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With this in mind, it comes as no surprise that nonlinear
dynamics and chaos have caught the attention of many researchers. Nonli-
nearities can produce sustained oscillations without any externaI shocks.
Moreover, chaotic systems exhibit complicated oscillation patterns with
some degree of impredictability. Yet another feature of nonlinear systems is
that qualitativeIy different behaviors are produced as one (or more) parame-
teres) of the system evolves in time.

Therefore, the introduction of nonlinearities in economic mo-
deIs reduces the importance of the role played by the externaI accidents
('shocks') in the explanation ofthe observed fluctuations of economic varia-
bles. Furthermore, different policy conclusions can be obtained from the
same structural model; what makes the difference between one case or
another is the value of some key parameter of the nonlinear modeI. For some
range ofvalues in the para meter space one can obtain stable solutions typical
of 'classicaI' economics; for other set of the parameter values, the same
structure produces the kind of 'unstable,4 results characterising most of
Keynesian economics or more complex solutions such as cycles and even
chaos (Grandmont, 1985). This situation is very different from the results
obtained from linear macroeconomic modeIs where different policy views
require different theoretical structures.

The use in econometric analysis of simple linear models with
stochastic disturbances may be - in some cases - inappropriate and even
misleading. In such cases, the use of nonlinear modeIs wouId be more
adequate. Once the linearity restriction is abandoned it is possible to think
of a single theoreticaI structure that produces different policy recommenda-
tions depending upon the specific values of some key parameters. These
deveIopments suggest that instead ofthe usual discussions about alternative
models the real issue may be the empirical research necessary to estimate
the values ofthe parameters in a unique nonlinear modeI.

As a consequence of this tendency a different line of research is
producing an abundant literature in which the efforts are directed towards
testing the availabIe time series searching for evidence of nonlinearities and
chaos in the underlying dynamic processes (Brock et aI., 1991). This impor-
tant issue will be addressed in section 7.

AsM. Boldrin from DeLA clearly states,

"it is probably not unfair to say that nonlinear
dynamies has not had a major impaet on the deue-
lopment of modem eeonomie theory. In faet, one

4 By unstable it is meant locally unstable, while global stability is implied. Chaotic
dynamics are typical examples of this situation.
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may even be tempted to add that, until VelY recently,
it was either an unfamiliar tool for the mathemati-
cal economist 01'one whose implications were often
disregarded as irrelevant to the pUlposes of the
research. Dynamical systems the01Y appeared for a
while in the background of the studies on the stabi-
lity of the 'tâtonnement' process and on optimal
growth and turnpike, but never really got on the
stage" (Boldrin, 1988).

In the last few years, however, we witness a revival of interest
on the study of nonlinear techniques as a result of the new ideas related to
chaotic dynamics and the endogenously generated economic fluctuations
explained as a deterministic phenomenon (Scheinkman, 1990). What we find
in the most recent literature on the subject is that many authors try to find
the 'roads to chaos in economics,5.

The objective of these efforts is to produce theoretical mo deIs
with 'reasonable' economic hypothesis (especially individual maximising
behaviour and competitive market clearing) and parameter values, that
predict cycles and chaos as logical outcomes. In view ofthe built-in stabilising
mechanisms operating in the typical capitalist economies, it was realised
that, in order to obtain chaotic dynamics, these mechanisms must be 'shut
down'. According to this, W. A. Brock presents a list of economic factors that
can explain chaos in dynamic economic evolution:

i) the intensity of people impatience, i.e., the extent to which
the economic agents behave myopically in relation to the
future;

ii) the absence of the usual properties of concave tastes and
technologies;

iii) the lack or imperfection of capital markets that permit bor-
rowing-Iending against expected future returns;

iv) nonequilibrium systems;

v) the existence of externalities in preferences or technologies;

vi) exogenous 'forcing functions' such as dynamics oftechnolo-
gical change (Brock, 1988).

5 This expression originated in the classical article by LeoKadanoff, fram Chicago,
who studied the transition to turbulence in hydrodynamical systems (Kadanoff,
1983).
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Finally, it is common to find in the literature dealing with
nonlinearity and chaos the recognition that what is really missing are efforts
to test the validity of the theoretical models by comparing the existing data
with their predictions.

4 PHASE-SPACE RECONSTRUCTION

One technique used in the analysis of nonlinear dynamical
systems is to plot a steady-state trajectory of a system in the phase-space.
Thus ify(t) is a trajectory of a given system this can be achieved by plotting
y(t) against y(t). As discussed below, in many practical situations only one
variable is measured. In such cases an alternative procedure is to plot
y(t - Tp) against y(t) where Tp is a time lago Such variables define the
so-called pseudo-phase plane and the choice of Tp is largely a matter of
graphical representation ofthe data and is not a criticaI issue. This procedure
is motivated by the fact that the embedded trajectories represented in the
pseudo-phase plane have properties similar to those ofthe original attractor
represented in the phase plane (Moon, 1987). This is discussed in more detail
in what follows.

4.1 DYNAMICAL EMBEDDINGS

An nth-order dynamical system can be represented as a set ofn
first-order differential or difference equations each governed by a state
variable. The global system thus has n time variables (Y1,Y2, ... , Yn 1 and the
solution of such a system can be thought of as n time series.

In a sense, the n time series mentioned above are obtained from
the originaln th-order system by decomposition. Also,given the n times series
it is possible to recover the original n-dimensional solution by taking each
state variable to be a coordinate of a 'reconstruction space' and to represent
each time series in such a space. Thus n time series can be used to compose
or reconstruct the system solution or trajectory. This is illustrated in Figure 2.

A difficulty encountered in practice with this approach is that
n, the order of the system, is seldom known and even when an accurate
estimate of this variable exists the number of measurements will not be as
large as n. Take for instance the atmosphere which is usually thought of as
a high-order system, but monitoring and weather forecasting stations only
measure a very limited number of variables of this system.
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Figure 2
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The n time selies defined by the state variables or an nth-order dynamical system can be used
to compose the trajetory in state space.

This can be described in a more mathematical way by conside-
ring the action of a measuring function h(y): IR" -> IR which operates on the
entire state or phase space but which yields just a scalar which is called the
measured uariable. The question which naturally arises at this stage is the
following: given f: IR" -> IR" and h(y) : IR" -> IR is it possible to reconstruct
a trajectory or solution of f from the scalar measurement h(y)?

Fortunately, it turns out that this question has an affirmative
answer if certain requirements are met (Takens, 1980; Packard et al., 1980;
Sauer et al., 1991). Thus embedology is concerned with how to reconstruct
the phase space of a dynamical system of order n from a limited set of
measurements q where q < n, and more often than not q = 1. In other
words, the objective is to reconstruct the phase space ofa system from asingle
time series. The resulting phase space is usually referred to as embedded
phase space, embedding space or just embedding.
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Another question which shouId be addressed is: why shouId we
be concerned in reconstructing the trajectories of a dynamical system?
Brief1y, if time series are used to reconstruct the phase space of dynamical
systems via embedding techniques, it is possibIe to use resuIts from differen-
tial geometry and topology to anaIyse the resuIting attractors which are
geometrical objects in the reconstructed space as can be seen in Figure lf. On
the other hand, a pureIy random time series has no structure and therefore
no geometry is revealed in the phase-space, see Figure lc.

An important point to mention is that both the reconstructed
and the original attractors are equivalent from a topoIogicaI point of view,
or in other words, they are diffeomorphic.

The practicaI consequences ofthis are obvious. No matter how
compIex a dynamical system might be, even if onIy one variabIe of such a
system is measured, it is possible to reconstruct the original phase space via
embedding techniques. It is also, at Ieast in principIe, possibIe to estimate
quantitative invariants of the original attractor, such as the fractal dimen-
sion and Lyapunov exponents, directly from the reconstructed attractor
which is topoIogically equivaIent to the original one. These ideas are illustra-
ted in Figure 3.

Figure 3
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In many practical situations the number of measured variables is limited. Embedding
techniques enable the reconstruction of the state space even from a single measure-
ment. The reconstructed (or embedded) and the original state spaces are equivalent.
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A convenient but by no means unique way of reconstructing
phase spaces from scalar measurements is achieved by using delay coordina-
tes (Packard et al., 1980; Takens, 1980; Sauer et al., 1991). Other coordinates
include the singular value (Broomhead, King, 1986) and derivatives (Goues-
bet, Maquet, 1992). A framework for the comparison of several reconstruc-
tions has been developed in (Casdagli et al., 1991) and three of the most
common methods have been studied in (Gibson et al., 1992).

A delay vector has the following form

y(k) = [y(k) y(k - T) ... y(k - (de - 1) T) 1 T (1)

where de is the embedding dimension and T is the delay time. Clearly, y(k)
can be represented as a point in the de-dimensional embedding space. Takens
has shown that embeddings with de > 2n will be faithful generically so that
there is a smooth map ft : IRd

, -> IR such that (Takens, 1980)

y(h + T) = fT (y(k)) (2)

for all integers k, and where the forecasting time T and T are also assumed
to be integers. A consequence of Taken's theorem is that the attractor
reconstructed in IR~is diffeomorphic to the original attractor in state space
and therefore the formeI' retains dynamical and topological characteristics
of the latter.

In the case of delay reconstructions, the choice of the recons-
truction parameters, de and T, is of the greatest importance since such
parameters strongly affect the quality of the embedded space. The selection
of de has been investigated in (Kennel et al., 1992). The choice of the delay
time has been discussed in (Kember, Fowler, 1993; Aguirre, 1995). Many
authors have suggested that in some applications it is more meaningful to
estimate these parameters simultaneously; this is tantamount to estimating
the embedding window defined as (de - 1) T (Martineire et al., 1992). Some
of these methods have recently been compared in (Rosenstein et al., 1994).
Dynamical reconstructions from nonuniformly sampled data has been ad-
dressed in (Breedon, Packard, 1992).

Taken's theorem gives sufficient conditions for equation (2) to
hold, that is, in order to be able to infer dynamical invariants of the original
system from the time series of a single variable, however no indication is
given as to how to estimate the map fr. Anumber ofpapers have been devoted
to this goal, see (AbaI'banel et al., 1990; Casdagli, 1991) for piecewise linear
techniques and (Kadtke et al., 1993; Aguirre, Billings, 1995) for global
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nonlinear models. It goes without saying that such models can be used not
only for reconstructing the original dynamics but are also quite useful for
forecasting.

5 ATTRACTORS

Qne ofthe nice features ofphase-space reconstruction is that an
embedded time series can be thought of as a geometrical object. If a deter-
ministic and stable system 'operates' for a sufficiently long time without
externaI shocks, it will reach the so-called (dynamical) steady-state regime
which does not imply that the system is still6. In phase space this corresponds
to the trajectories of the system falling onto a particular 'object' which is
called the attractor. Asymptotically stable linear systems excited by constant
inputs have point attractors which have dimension zero and correspond to a
constant time series. Nonlinear systems, on the other hand, usually display
a wealth of possible attractors. To which attractor the system will finally
settle depends on the system itself and also on the initial conditions.

It should be pointed out that the shape and dimension of the
attractors in phase space are directly related to the complexity ofthe dynamics
of the respective time series. Thus, simple low dimensional attractors corres-
pond to simple time series dynamics whereas more complex time senes lie on
attractors with higher dimensionoThis is illustrated in Figure 4.

Figure 5 shows a time series of the monthly number of people
registered as unemployed in the former West Germany for the period
January 1948-May 1980. The steep increase in the number of unemployed
in the beginning can be due to war effect, and the sudden increase in the
1970s coincides with the world energy crisis and the world recession in
general (Subba-Rao, Gabr, 1984). Reconstructing the phase space for these
data has suggested that there are several different "attractors" underlying
the data. Such "attractors", of course, have different geometries in the
reconstruction space and this corresponds to the system having diverse
dynamical properties over different periods oftime, a fact which would hardly
come as a surprise.

The most common attractors are thepoint attractors (dimension
zero), limit cycles (dimension one) and tori (dimension two). Another type of
attractor which has recently deserved a great deal of attention are the
so-called strange or chaotic attractors which are fractal objects. Such attrac-
tors will be introduced below.

6 Similarly, a time series does not have to be constant to be (statistically) stationary.
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Time series and respective attractors. (a) damped oscillations settling onto a (b) point
attractor. (c) quasi-periodic oscillations lie on a (d) torus in state space. Attractors with
higher dimensions and more complicated shapes correspond to time series with greater
complexity.
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Figure 5
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5.1 Chaotic or strange attractors

Despite some attempts, there is no widely accepted definition of
chaos or chaotic attractors. In this section, a rather intuitive view of such
attractors is given. Firstly, it should be realised that chaos is not a patholo-
gical dynamieal regime which is only exhibited by carefully designed para-
digms. Secondly, chaos is not a dynamical regime which lacks order or
pattern. On the contrary, chaotic systems have well defined patterns of
behaviour.

The terms strange and chaotic were coined because in the
genesis of chaos, the (now well known) attractors which scientists carne
across were totally different from what was known at the time (thus the term
strange), and the time series produced by such systems would not followany
predictable path (thus the term chaotic). Although there exist some patho-
logical cases in which strange attractors are nonchaotic (Grebogi et ai., 1984),
the terms 'strange' and 'chaotic' are usually used interchangeably.

It is instructive to wonder what happens if a chaotic time series
is embedded in phase space. What kind of geometrical object is formed in
such a space? For the sake of simplicity, assume that the dynamical system
is continuous and ofthird order. Ifthe time series produced by such a system
is chaotic, whenever a phase space reconstruction is attempted it becomes
clear that such a space cannot be a two-dimensional space. Ifthe phase space
were of dimension two, the system trajectories would cross, thus violating
the uniqueness of solutions of differential equations. In order to satisfy this
requirement the dimension can be increased to three and now the trajectories
in phase space do not cross. The bundle of trajectories in the three-dimen-
sional phase space forms a geometrieal object which is the attractor. As
mentioned before, such an attractor needs, at least, a three-dimensional
space to exist but, rather surprisingly, has zero volume. This paradox cannot
be solved by 'conventional' geometrical objects and a new type of object is
ealled for. In this particular case, such an object must have a dimension which
is greater than two (otherwise the attractor could exist in a two-dimensional
space) but cannot have dimension three (otherwise the attractor would have
zero volume.) Therefore, the object must have a dimension which is not an
integer. Such objects are called fractais and can be thought of as the images,
of chaos since an embedded chaotic time series will result in a fractal in the
embedding space7.

The discussion above pointed out that strange attractors are
fractal objects. But what makes an attractor become fractal? To answer this

7 There are some pathological exceptions to this rule, with which we will not be
concerned here.
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question in detail goes beyond the scope of this paper. However, it can be
conjectured that, on the one hand the system is globally stable (since the
trajectories are confined to a limited region of the phase space, that is, the
attractor) and on the other hand there must be some kind of instability in
the system which produces the fractal characteristics ofthe attractor. Thus
a chaotic attractor can be thought of as being globally stable but locally
unstable.

6 DYNAMICAL INVARJANTS

The local instability of a chaotic system is responsible for the
inability of making long-term predictions of chaotic time series. This proper-
ty is known as sensitiue dependence on initial conditions. It is difficult to tell
if the fractal nature of a strange attractor is responsible for the sensitivity
to initial conditions or if it is the other way around. In any case, the two
features usually come together in chaotic attractors and consequently a way
of quantifying such attractors is to estimate how unstable and fractal they
are. Measures of stability and fractality are provided by Lyapunov exponents
and the correlation dimensiono These concepts are briefly discussed in what
follows.

6.1 Sensitivity to initial conditions

Probably the most fundamental property of chaotic systems is
the sensitive dependence on initial conditions. This feature arises due to the
local divergence oftrajectories in state space in at least one 'direction'. This
will be also addressed in the next section.

In order to illustrate sensitivity to initial conditions and one of
its main consequences, it will be helpful to consider the logistic map.

y(k) = A [1 - y(k - 1) 1y(k - 1). (3)

In order to iterate equation (3) on a digital computer, an initial
condition y(O) is required. Using this value, the right hand side of equation
(3) can be evaluated for any value ofA. This produces y(1) which should be
'fedback' and used as the initial condition in the following iteration. This
procedure can be then repeated as many times as necessary to generate a
time series y(O), y(l), y(2), ....

Agraphical way ofseeing this is illustrated in Figure 6. It should
be noted that the right hand side of equation (3) is a parabola, as shown in
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Figure 6a. Thus to evaluate equation (3) is equivalent to finding the value
on the parabola which corresponds to the initial condition. This is repre-
sented in Figure 6a by the frrst vertical line. The feeding back of the new
value is then represented by projecting the value found on the para bola onto
the 450 line. This completes one iteration.

Figure 6

(b)
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0.2 0.4 0.6 0.11

Graphical iteration of the logistic equation (3). (a) regular motion (A = 2.6) and (b)
respective time series, (c) chaotic motion (A = 3.9), and (d) respective time series. In
these figures the same initial condition has been used, namely y(O) = 0.22. In figures
(e) and (f) an interval of initial conditions has been iterated for the same values of A
as above. The intervals used were y(O) E [0.22 0.24] and y(O) E [0.220 0.221], res-
pectively. Note how such an interval is amplified when the system is chaotic, m. This
is due to the sensitive dependence on initial conditions.
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Chosing the initial condition y(O) = 0.22 and A = 2.6, Figure
6a shows the iterative procedure and reveals that after a few iterations the
equation settles to a point attractor. The respective time series is shown in
Figure 6b. The same procedure was followed for the same initial condition
and A = 3.9. The results are shown in Figures 6c-d. Clearly, the equation
does not settle onto any fixed point and not even onto a limit cycle. In fact,
it is known that equation (3) displays chaos for A = 3.9.

What happens if instead of a single initial condition an interval
of initial conditions is iterated? This is shown in Figures 6e-f. For A = 2.6,
the map wiil eventuaily settle to the same point attractor as before. This is
a typical result for regular stable systems and it illustrates how alI the
trajectories based on the initial conditions taken from the original interval
converge to the same attractor.

Considering a much narrower interval of initial conditions and
proceeding as before yielded the results shown in Figure 6f for which
A = 3.9. Clearly, the interval of initial conditions was widened at each
iteration. Such an interval can be interpreted as an error in the original initial
condition, y(O) = 0.22 . In practice errors in initial conditions wiil be always
present due to a number of factors such as noise, digitalisation effects,
round-off errors, finite wordlength precision, etc. It is this effect ofamplifying
errors in initial conditions which is known as the sensitive dependence on
initial conditions and an immediate consequence of this feature is the
impossibility of making long-term predictions for chaotic systems. The next
section describes indices which quantify the sensitivity to initial conditions.

6.2 Lyapunov exponents

Lyapunov exponents measure the average divergence of nearby
trajectories along certain 'directions' in state space. A chaotic attracting set
has at least one positive Lyapunov exponent and no Lyapunov exponent of
a non-chaotic attracting set can be positive. Consequently such exponents
have been used as a criterion to determine if a given attracting set is or is
not chaotic (Wolf, 1986). Recently the concept of local Lyapunov exponents
has been investigated (Abarbanel, 1992). The local exponents describe orbit
instabilities a fixed number of steps ahead rather than an infinite number.
The (global) Lyapunov exponents of an attracting set of length N can be
defined as8:

8 Many authors use log2 in this definition.
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1,2, ..., n, (4)

where Iog e = In and the [Ji (N) C 1 are the absolute vaIues of the eigenva-

lues of

(5)

where Df (Yi) E IR n x n is the Jacobian matrix of the n-dimensional differen-
N

tial equation (or discrete map) evaIuated atYi, and [Yk 1,,=1 is a trajectory on
the attractor. Note that n is the dynamical order ofthe system.

The estimation of Lyapunov exponents is known to be a nontri-
vial task. The simplest algorithms (Wolf et al., 1985; Moon, 1987) can only
reliabIy estimate the Iargest Lyapunov exponent (Vastano, Kostelich, 1986).
Estimating the entire spectrum is a typicalIy ill-conditioned problem and
requires more sophisticated algorithms (Parker, Chua, 1989).

In view of such difficu~ties and the fact that the largest Lyapu-
nov exponent ""1, is in many cases the only positive exponent and that this
gives an indication of how far into the future accurate predictions can be
made, it seems appropriate to use ""1 to characterise a chaotic attracting set
(Rosenstein et al., 1993).

6.3 Correlation dimension

Another quantitative measure of an attracting set is the fractal
dimensiono In theory, the fractal dimension of a chaotic (non-chaotic) attrac-
ting set is non-integer (integer). An exception to this rule are fat fractals
which have integer fractal dimension which is consequently inadequate to
describe the properties of such fractals (Farmer, 1986). Nontheless, like the
largest Lyapunov exponent, the fractal dimension can, in principIe, be used
not only to diagnose chaos but also to provide some further dynamical
information (Grassberger et al., 1991). A deeper treatment can be found in
(Grassberger, Procaccia, 1983a) for raw data and in (Badiiet al., 1988; Sauer,
Yorke, 1993) for filtered time series.

The fractal dimension is related to the amount of information
required to characterise a certain trajectory. If the fractal dimension of an
attracting set is D + Õ, D E 72+, where O < Õ < 1, then the smallest
number of first-order differential equations required to describe the data is
D + 1.
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There are several types of fractal dimension such as the point-
wise dimension, correlation dimension, information dimension, Hausd01ff
dimension, Lyapunou dimension, for a comparison of some of these dimen-
sions see (Henstschel, Procaccia, 1983; Moon, 1987). For many strange
attractors, however, such measures give roughlythe same value (Moon, 1987;
Parker, Chua, 1989). The correlation dimension9 (Grassberger, Procaccia,
1983b), however, is clearlythe most widelyused measure offractal dimension
employed in the literature.

A time series (Yi Cl can be embedded in the phase space where
it is represented as a sequence of de-dimensional points
y) = [Y) Y)-1 ... Y)-d,+I]. Suppose the distance between two such points islO

Si) = I Yi - Y) I then a correlation function is defined as (Grassberger,
Pro-caccia, 1983b):

C (£) = lim N1 (number of pairs (i,j) with Si) < £).
N-~

The correlation dimension is then defined as

D - l' loge C (£)
e- 1m 1 .

E _ ~ oge £

(6)

(7)

For many attractors De will be (roughly) constant for values
of £ within a certain range. In theory, the choice of de does not influence the
final value of De if de is greater than a certain value. In particular, it
has been shown that provided there are sufficient noise-free data,
de = Ceil (De), where Ceil (-) is the smallest integer greater than 01' equal to
De (Ding et al., 1993). In practice, due to the lack of data and to the presence
of noise, de > Ceil (De), thus several estimates of the correlation dimension
are obtained for increasing values of de . If the data were produced by a
low-dimensional system, such estimates would eventually converge. Of cour-
se, these results depend largely on both the amount and quality of the data
available. For a brief account of data requirements, see section 7.2 below.

Probably the greatest application of the correlation dimension
is to diagnose if the underlying dynamics of a time series have been produced
by a low-order system. Because this is an important problem, the estimation

9 This measure can be seen as ageneralised dimension, and is considered to be the
easiest to estimate reliably (Grasbergber, 1986b) and thus remains the most
popular procedure so faro

10 Several norms can be used here such as Euclidean, Ih etc.
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of correlation dimension has attracted much attention in recent years as wiil
be seen in the next section.

7 DIAGNOSING NONLINEARITIES AND CHAOS

One of the first steps in time series analysis is to verify if the
data at hand are nonlinear and, if so, ifthey are chaotic. The outcome ofthis
first step will 'set the atmosphere' in the later stages. Of course, if there is
no evidence for nonlinearity in the data, simpie linear and (perhaps) stochas-
tic modeis should be considered. On the other hand, if the data seem to be
nonlinear then nonlinear model representations should be tried, or in the
words ofBrock and Sayers (1988):

"If you have strong evidence from our methods that
nonlinear structure exists, then it is wOlth spending
resources trying to identify and estimate it".

7.1 Diagnosing chaos

In general, the problem of diagnosing chaos can be reduced to
estimating invariants which would suggest that the data are chaotic. For
instance, positive Lyapunov exponents and non-integer dimensions would
suggest the presence of chaos. The main question is how to confidently
estimate such properlies from the data, especially when the available records
are relatively shorl and possibly noisy.

In view of the relevance of this topic, a number of different
techniques have appeared in recent literature. In order to facilitate the
discussion, the procedures used in diagnosing chaos can be divided in three
major groups as shown below. Needless to say, such division is not an agreed
upon standard, nor is the list of methods exhaustive.

Non-parametric methods

These include the use oftools which take the data and estimate
dynamical invariants which, in turn, will give an indication of the presence
of chaos. Such tools include power spectra, the largest Lyapunov exponent,
the correlation dimension, reconstructed trajectories, Poincaré sections,
relative rotation rates etc. Detailed description and application of these
techniques can be found in the literature (Moon, 1987;Tufillaro, et ai., 1990;
Denton, Diamond, 1991). For a recent comment of the practical difficulties
in using Lyapunov exponentsand dimensions for diagnosing chaos see
(Mitschke, Dammig, 1993).
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Two practical difficulties common to most of these approaches
are the number of data points available and the noise present in the data.
These aspects are brief1ydiscussed in section 7.2.

Predietion-based teehniques

Some methods try to diagnose chaos in a data set based upon
prediction errors (Sugihara, May, 1990; Casdagli, 1991; EIsner, 1992; Ken-
nel, Isabelle, 1992). Thus predictors are estimated from, say, the frrst half of
the data records and used to predict over the last half. Chaos can be, at least
in principIe, diagnosed based on how the prediction errors behave as the
prediction time is increased (Sugihara, May, 1990), or based on how the
prediction errors related to the true data compare to the prediction errors
obtained from 'faked' data which are random but have the same length and
speclral magnitude as the original data (Kennel, Isabelle, 1992). A related
approach has been termed the method of surrogate data (Theiler et al., 1992).

Regardless of which criterion is used to decide if the data are
chaotic or not, predictions have to be made. Clearly, the viability of these
approaches depends on how easily predictors can be estimated and on the
convenience of making predictions. Once a predictor is estimated, criteria
and statistics such as the ones presented in (Sugihara, May, 1990; Kennel,
Isabelle, 1992) can be used to diagnose chaos.

Methods related to eeonomie applieations

Clearly, most ofthe methods cited in the two groups above can
be applied to economic time series. This group, however, includes a few
techniques which seem to have been first developed for applications in
economics. Brock (1986) suggested a test which compares the correlation
dimension and the largest Lyapunov exponent of a time series and of the
residuals produced by fitting a linear model to the set of data. A good
discussion of the application of Lyapunov exponents and correlation dimen-
sion estimates applied to economicdata can be found in (Brock, Sayers, 1988).
In particular, these authors pointed out that "near unit root processes can
generate low dimension estimates and apparently positiue largest Lyapunou
exponent estimates".

Some alternative tests used to distinguish high-dimensional
chaos, i.e. 'randomness', from low-dimensional chaos, i.e. deterministic and
complex dynamics, are based on variants of the correlation dimensiono The
so-called BDS test uses a statistic defined in terms of the correlation dimen-
sion and can be used to test the null hypothesis of identically independent
distribution (IID) (Brock et al., 1988). A statistic based on the lagged
correlation integral has been defined to test for statistical independence
under the assumptions of stationarity and gaussianity (Dechert, 1989).
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These approaches have been reviewed in (Brock, Dechert, 1991). For an
earlier comparison of several methods see (Barnett, Chen, 1988).

7.2 Data requirements

The length and quality of the data records are crucial in the
problem of characterisatian of strange attractors. At present, there seems to
be no general rule which determines the amount of data required to learn
the dynamics, to estimate Lyapunov exponents and the correlation dimen-
sion of attractors. However it is known that

"in general the detailed diagnasis af chaatic dyna-
mical systems requires lang time series af high
quality" (Ruelle, 1987).

It should be pointed out that this is a very rapidly developing
research area and significant improvements have been made. Consequently,
new algorithms tend to require less data. On the other hand, there are several
limitations which are not directly imposed by computational procedures but
rather are inherent in systems \vith complex dynamics. Thus the information
presented below should be seen in the light of these remarks.

It has been argued that the data required to estimate the
Lyapunov exponents should satisfy N > 10D [quoted in Rosenstein et alo
(1993)] and N > 30D where D is the dimension of the system (Wolfet al.,
1985).

Fairly long time series are also required for estimating the
correlation dimensiono In fact, it has been pointed out that dimension
calculations generally require larger data records than those needed to
estimate Lyapunov exponents (Wolf,Bessoir, 1991). For a strange attractor,
if insufficient data is used the results would indicate the dimension of certain
parts of the attractor rather than the dimension of the entire attractor
(Denton, Diamond, 1991). However, results have been reported which sug-
gest that consistent estimates of the correlation dimension can be obtained
from data sequences with less than 1000 points (Abraham et al., 1986). On
the other hand, there seems to be evidence that "spuriously small dimension
estimates can be obtained from using too few, too finely sampled and too
highly smoothed data" (Grassberger, 1986a). Moreover, the use of short
series and noisy data sets may cause the correct scaling regions to become
increasingly shorter and may cause the estimate ofthe correlation dimension
to converge to the correct result for relatively large values of the embedding
dimension (Ding et al., 1993). Thus there seems to be no agreed upon rule to
determine the amount of data required to estimate dimensions with confi-
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dence but it appears that at least a few thousand points for low dimensional
attractors are needed (Essex, Nerenberg, 1991). In particular, N ~ 10

Dc
/2 has

been quoted in (Ding et ai., 1993).
Qne result that claims to be the frrst case of identified chaos in

economic data is that of Barnett and Chen who report about a

"research project that has been successful in identi-
fying economic chaotic attractors from long time
series ofunusually high quality data. In particular,
those attractors can explain the dynamical behauior
ofthe broad Diuisia monetary aggregates and hence
can reueal information about the nature of the dy-
namical system that produces the observed moneta-
ry seruices path ouer time ... Although there
preuiously haue been a number of successful appli-
cations of deterministic chaotic dynamics in econo-
mic theory, we belieue that our results represent the
first clearly successful empirical application" (Bar-
nett, Chen, 1988).

The length and quality of the data set depends on a number of
factors. However, it seems instructive to indicate the length ofreal economic
time series which have been used in the literature in connection with testing
for nonlinearities and chaos. 5200 daily stock returns (Scheinkman, LeBa-
ron, 1989). Two 468 (monthly) samples ofUS base money and interest rates
on three month US Treasury bills (Granger, Hallman, 1991). Approximately
150 sample observations were used to test for low dimensional dynamics in
the post War II, US quarterly GNP. However, it was warned that there
seemed not to be enough information in such a short time series to validate
the results (Brock, 1986). Moreover, in connection with other short time
series it has been warned that

"low dimension and 'rough' estimates (euen though
apparently positiue) of Lyapunou exponents do not
make the case for low-dimensional deterministic
chaos in data sets as short as ours" (Brock, Sayers,
1988).

It has been concluded, based on Monte Carlo simulations, that
the BDS statistic does not approximate asymptotic normality for sample sizes
under 500 (Brown et ai., 1991).
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7.3 Diagnosing nonlinearities

The remarks above make it plainly clear that very few, if any,
economic time series would qualify as good candidates from which reliable
dynamical invariants could be estimated. It is fundamental to realise that
the difficulties in obtaining long time series go well beyond problems such
as storage and computation time. In fact, the greatest difficulty is not even
the impracticalIy long span of time which may be required to record thou-
sands of, say, monthly observations. What seems to be the bottleneck of the
whole procedure is the system itself, because a basic assumption made by
most algorithms is that alI the data are on a single attractor. This is
equivalent to requiring that the data should be stationary. Therefore if a
system is evolving from one attractor to anotherll, and the time spent on a
'single' attractor is insufficient to characterise such a dynamical regime, the
chances of confidently est.imating dynamical invariants from such data with
the algorithms developed so far are very sEm. An important problem related
to this is to determine periods of time (windows of data) within which the
system can be considered stationary. A test for stationarity has been recently
presented in the context of nonlinear dynamics (Isliker, Kurths, 1993).

The previous discussion suggests that in many practical situa-
tions, especialIy concerning economic time series, it might be more realistic
(and also easier) to diagnose nonlinearities in the data rather than trying to
verify if the system has positive Lyapunov exponents or if its correlation
dimension is non-integer.

The so-calIed W test can detect nonlinearities by using the
residuals of a linear model (Brock, Sayers, 1988). This method has been used
to test for the presence of hysteretic path dependence of monthly US
aggregates in the period 1971-1993 (Peel, Speight, 1994). The correlation
dimension has been used to detect nonlinear departures from random-walk
behavior in stock returns (Scheinkman, LeBaron, 1989). These and other
related approaches have been discussed in (Barnett et al., 1992).

In some applications, it might be of interest to diagnose other
dynamical features apart from chaos or even nonlinearities. In (Granger,
HalIman, 1991) a test for linear and nonlinear cointegration was applied to
two sets of real data. The procedure was based on a unit root test, and
evidence has been found for nonlinear cointegration suggesting the existence
of a nonlinear attractor.

11 This seems to be the case with the German unemployment data, see Figure 5.
Here the problem of amount of data would be criticaI since these assumed
attractors have around 100 sample observations each.
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It seems appropriate to conclude this section with a caveat:

" ... our current results suggest that there are
enough nearly arbitrary degrees of freedom availa-
ble to economic researchers to permit them to find
whatever they may wish to find" (Barnett et al.,
1992).

8 FINAL REMARKS AND FURTHER READING

This paper has brief1y touched upon some aspects ofthe theory
and practice of nonlinear dynamics which seem relevant for applications in
economics. None of the discussions and definitions should be considered
exhaustive nor mathematieally precise. This was the price the authors
deliberately chose to pay in order to produce what they hope will turn out to
be a readable, formulae-free and clear introduction to the subject.

Another objective which was kept in mind throughout the paper
was to provide relevant references for further reading. Although it would be
impossible to compile a complete list, a few more works are cited in what
fol1ows.

The following references seem to be a good starting point. The
books (Gleik, 1987) and (Stewart, 1989) are a good introduction for the
average reader. A more formal coverage is given by (Thompson, Stewart,
1986) anc..(Moon, 1987). For a mathematical exposition on the subject see
(Guckenheimer, Holmes, 1983) and (Wiggins, 1990). A good ar;count on
computer algorithms for nonlinear systems applieations can be found in
(Parker, Chua, 1989). Good surveys on modelling and analysis of chaotic
series ean be found in (Grassberger et al., 1991; Abarbanel et al., 1993).

Some specific information about the wide application in econo-
mics ofthe ideas and techniques reviewed in this paper are mentioned below.

In the first place, special issues of three journals that were
devoted entirely to this subject are:

i) the first issue ofthe 40th volume of the Journal of Economic
Theory, published in October 1986;

ii) the supplement to volume 7 of the Journal of Applied Eco-
nometrics, (Special Issue - Nonlinear Dynamics and Econo-
metrics), December 1992;
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iii) the 5th number of the 25th volume of the International
Journal of Systems Science, (Special Issue - Monetarism
versus Keynesianism), which appeared in May 1994.

Jess Benhabib collected in a single volume a set of21 papers that
provide an ample overview of the various economic mechanisms that produce
cyclic or chaotic dynamics in equilibrium (Benhabib, 1992). These contribu-
tions to the literature discuss the subject of oscillatory equilibria in modeIs
with overlapping generations as well as those of the Ramsey type with
infinitely lived representative agents.

Boldrin and Woodford provide a survey of the literature dealing
with endogenous cycles (Boldrin, Woodford, 1992). These authors use rigo-
rously formulated equilibrium models, in which agents optimise with perfect
foresight, to show that endogenous fluctuations (either periodic or chaotic)
can persist in the absence of exogenous shocks. Some books already cited in
former sections of this article also include comprehensive surveys on the
subject (Rosser, 1991; Anderson et al., 1988).

Within the Keynesian framework there are several contribu-
tions that attempt to explain how complicated dynamics can be generated
(Torre, 1977; Dana, Malgrange, 1984). 'l'hese authors show that, by varying
a bifurcation parameter, different regimes can be obtained from a given
model ranging from an attracting steady state to an apparently chaotic state.
More on bifurcations can be found in the following books (Guckenheimer,
Bolmes, 1983; Wiggins, 1990). A nonlinear version of Samuelson's multi-
plier-accelerator model is presented by (Day, Shafer, 1985).

Following the tradition of the descriptive growth models initia-
ted by Solow in the 1950s other authors used alternative hypotheses to show
that those changes could bring about chaotic dynamics (Day, 1982; Bhaduri,
Barris, 1987; Stutzer, 1980).

Another type ofmodels that also present endogenous cycles are
those based on the concept of overlapping generations. In these models
people live two periods: in the first period they save part of their incomes to
spend in the next, that is, we have life-cycle savings by individuals. Benhabib
and Day studied model economies with these characteristics from the point
of view of nonlinear dynamics under different sets of assumptions to obtain
chaos (Benhabib, Day, 1980; Benhabib, Day, 1982). Other studies have
generalized and improved these results on overlapping generations econo-
mies (Grandmont, 1985; Farmer, 1986; Reichlin, 1986).

Opposite to the overlapping generations models are the Ramsey
type models. In these competitive model economies individuals live forever,
have perfect foresight, and try to maximise the discounted sum of their
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utilities over the infinite horizon. It was shown that chaotic dynamics can be
generated by optimal solutions ofinfinite horizon growth models ofthis kind
(Boldrin, Montrucchio, 1986; Deneckere, Pelikan, 1986).

A variety of other economic models have been found to exhibit
chaotic dynamics under reasonable hypotheses and parameter values. One
of them considers the theory of the firm (Albin, 1987), other consumer
behaviour (Benhabib, Day, 1981), other proves chaos in a simple model of
research and development (Baumol, Wolf, 1983). Tryingto provide a "sketeh
ar the wealth ar eurrent researeh areas", the following list of applications
classified by type of research area has been provided in (Nijkamp, Reggiani,
1995):

i) economic growth theory, with emphasis on business cycles
(Balducci et al., 1984; Brock, Sayers, 1988; Day, 1982; Funke,
1987; Grandmont, 1985; Hommes, 1991; Puu, 1989);

ii) theory of structural economic change, with emphasis on the
emergence and existence of long waves (Nijkamp, 1987;
Rasmussen et al., 1985; Sterman, 1988);

üi) innovation theory, with emphasis on R&D behaviour (Bau-
moI, Wolf, 1983; Nijkamp et al., 1991);

iv) theory of economic competition, with emphasis on limited
competition and game theory (Albin, 1987; Dana, Montruc-
chio, 1986; Deneckere, Pelikan, 1986; Ricci, 1995);

v) theory of economic equilibrium, with emphasis on growth
and trade (Hommes, Nusse, 1989; Lorenz, 1987; Nusse,
Hommes,1990).

The spirit of this papel' has been to point out that a typical
economic time series 01' economic system can (and perhaps should) be seen
as a dynamical system and analysed as such. A key concept to achieve this is
the embedding of the real data in a reconstruction space. This is the basis
upon which a lot ofwhat is known as ehaas theary rests. There are nontrivial
results which guarantee that if the embedding is successful, it is possible to
analyse the embedded data and in so doing infer dynamical properties of the
real system. We close this papel' with this key concept and recall that Figure
3 summarises this pictorially.
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